Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex.

نویسندگان

  • Suresh D Muthukumaraswamy
  • Krish D Singh
چکیده

Although functional magnetic resonance imaging is an important tool for measuring brain activity, the hemodynamic blood oxygenation level dependent (BOLD) response is only an indirect measure of neuronal activity. Converging evidence obtained from simultaneous recording of hemodynamic and electrical measures suggest that the best correlate of the BOLD response in primary visual cortex is gamma-band oscillations ( approximately 40 Hz). Here, we examined the coupling between BOLD and gamma-band amplitudes measured with magntoencephalography (MEG) in human primary visual cortex in 10 participants. In Experiment A, participants were exposed to grating stimuli at two contrast levels and two spatial frequencies and in Experiment B square and sine wave stimuli at two spatial frequencies. The amplitudes of both gamma-band oscillations and BOLD showed tuning with stimulus contrast and stimulus type; however, gamma-band oscillations showed a 300% increase across two spatial frequencies, whereas BOLD exhibited no change. This functional decoupling demonstrates that increased amplitude of gamma-band oscillations as measured with MEG is not sufficient to drive the subsequent BOLD response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neur...

متن کامل

Inter- and Intra-Individual Covariations of Hemodynamic and Oscillatory Gamma Responses in the Human Cortex

The time course of local field potentials (LFPs) displaying typical discharge frequencies in the gamma frequency range highly correlates with the blood oxygen level dependent (BOLD) signal in response to rotating checkerboard stimuli in animals. In humans, oscillatory gamma-band responses (GBRs) show strong inter-individual variations in frequency and amplitude but considerable intra-individual...

متن کامل

Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex

In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-d...

متن کامل

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human brain mapping

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2009